

LEVEL III
BASIC

Produced by Microsoft
Written by Bill Gates

Documented by Andrea Lewis
Instruction Booklet by David BunneD

Microsoft Coasumer Produets

1t1OO NE Eigbtb, Suite 119, Bellevue, WA 91004

COPYRIGHT NOTICE

Microsoft LEVEL III BASIC is copyrighted under United States
Copyright Laws by Microsoft.

It is against the law to copy LEVEL III BASIC on cassette tape, disk, or
any other medium for any purpose other than personal convenience.

It is against the law to give away or resell copies of Microsoft LEVEL III
BASIC. Any unauthorized distribution of this product deprives the
authors of their deserved royalties. Microsoft will take full legal
recourse against violators.

If you have questions on this copyright, please contact:

Microsoft Consumer Products

10800 NE Eighth, Suite 819

Bellevue, WA 98004

Copyright© Microsoft, 1979
All Rights Reserved
Printed in U.S.A.

2

Table of Contents

Chapter ONE:

Getting Started with LEVEL III

LEVEL III BASIC Explained •••••••••••••••• 8
A Word About Microsoft ••••••••••••••••••• 9
The Right Hardware •••••••••••••••••••••• 10
LEVEL III Cassette ••••••••••••••••••••••• 11
How to Load LEVEL III ••••••••••••••••••• 12
What to Do About Loading Problems ••••• 16
LEVEL III Notation Format Rules•••••••• 18
IfYou Have a TRS·80 Screen Printer •••••• 19

Chapter TWO:
LEVEL III Programming Convenience

How to Use Abbreviated Entries •••••••••• 22
Create Your Own Abbreviated Entries •••• 24
How to Renumber Program Lines •••••.••• 25
Saving and Loading LEVEL III Programs•• 27
No More Coded Error Messages••••••••••• 29

3

Chapter THREE:

LEVEL III Computer Graphics

Two Modes of Presentation ••••••••••••••• 32
How to Draw Lines and Rectangles ••••••. 38
GETting and PUTting Graphic Arrays ••••• 42
Some Examples of Graphics Programs•••• 47
Advanced Graphics Programs••••••••••••• 52

Chapter FOUR:

LEVEL III Features From DiskBASIC

INPUTting String Literals with
LINE INPUT •••••••••••••••••••••••••••• 58

Adding a Time Limit with #LEN ••••••••••• 59
Replacing a Portion of One String with

Another String ••••••••••••••••••••••••• 60
You Can Search a String for a Substring •• 61
How to Define Functions ••••••••••••••.•. 62
Up to 10 Machine Language

User Routines •••••••••••••••••••••••••• 64
4

How to Convert Hex and Octal
to Decimal•••••••••••.•••••••••••..•.••• 66

SYSTEM Command Caution ...••••.••..•• 67

Chapter FIVE:

LEVEL III Expansion Interface
Features

LEVEL Ill's Clock and Calendar•••........ 70
How to Turn Off the System Clock 71
How to Output to an RS-232 Port 72
Lockout Recovery 73

General Index 75

5

6

Chapter ONE:

Getting Started with LEVEL III

v- LEVEL III BASIC Explained

V- A Word About Microsoft

V- The Right Hardware

V- LEVEL III Cassette

V- How to Load LEVEL III

V- What to Do About Loading Problems

t/ LEVEL III Notation Format Rules

t/ If You Have a TRS·80 Screen Printer

7

LEVEL ,III BASIC Explained

LEVEL III BASIC is a software package, supplied on cassette tape, that
enhances Radio Shack's TRS-80 Level II BASIC.

If you have a TRS-80 Computer with Level II BASIC and 16Kor more
RAM memory, LEVEL III BASIC gives you a new dimension of com
puter programming. In only 5.5K RAM memory, it provides your
TRS-SO with all the non-disk features that are currently only available
with TRS-80 Disk BASIC. These include a new string function
(INSTR), enhancements to the MID$ and USR functions, user-defined
functions and the DEFUSR statement, hexadecimal and octal con
stants, LINE input, and long error messages.And this is only the begin
ning.

LEVEL III BASIC includes dynamic features never before available to
TRS-80 users. These include advanced computer graphics commands,
automatic program re-numbering, abbreviated entries, a timed INPUT
statement called INPUT #LEN, and more.

With LEVEL III BASIC, you'll also find that keyboard bounce has
been corrected, tape operations are more reliable, and output to an
RS-232 device has been simplified.

LEVEL III BASIC was written by Microsoft to give you the tools for
writing better programs. Not only does it increase the programming
power of your TRS-80, it gives you features that make programming
easier and faster.

The people at Microsoft hope you will be pleased with this addition to
your TRS-SO.

8

A Word About Microsoft

Microsoft produces high-quality, concise software for today's
microprocessors.

Microsoft's BASIC Interpreter, in its several versions, has become the
standard high-level programming language used in microcomputers. In
addition to Radio Shack TRS-80 Level II BASIC and TRS-80 Disk
BASIC, Microsoft has supplied BASIC Interpreters for the Com
modore PET, the Apple II Computer, NCR 7200, Compucolor II, OSI,
Pertec Altair, and many others.

Microsoft's careful approach to the development of microprocessor
software has allowed the production of large amounts of bug-free, well
designed code in a minimum amount of time. Currently available:
BASIC interpreters for the 8080, 6800, and 6502 microprocessors, a
FORTRAN compiler, assembler, loader and runtime library package
for the 8080 and Z-80 microprocessors and an ANS-74 COBOL com
piler for the 8080and Z-80, and a complete offering of systems software
for the new 16-bit microprocessors.

Microsoft Consumer Products was founded as a division of Microsoft
in the summer of 1979to provide microcomputer users with high quality
system and utility software as well as application software.

LEVEL III BASIC is just the first of many Microsoft products being
planned for the end-user or consumer market. All of these software
packages will be marketed by Microsoft Consumer Products.

Microsoft Consumer Products is dedicated to providing only the best,
most reliable microcomputer software.

For more information on Microsoft or Microsoft products, please write
to: Microsoft Consumer Products

10800 NE Eighth, Suite 819
Bellevue, WA 98004

9

The Right Hardware

LEVEL III BASIC can be used with the Radio Shack TRS-80
Microcomputer with Level II BASIC and 16K RAM minimum memory.

While LEVEL III is supplied on cassette tape and is primarily intended
for use with cassette storage, it can be used on a Disk-based TRS-80
system. LEVEL III itself can be stored and retrieved from disk,
however, LEVEL III generated programs subsequently have to be
stored and retrieved from cassette tape. You do not have access to disk
storage commands while in LEVEL III BASIC.

LEVEL III BASIC has three features that are exclusively for TRS-80
Computers with the Expansion Interface add-on. These include a built
in digital clock-calendar, output to RS-232 port, and a command for
turning on and off the System Clock. If you have a TRS-80 with Expan
sion Interface, you can read more about these features in the last
chapter.

10

LEVEL III Cassette

The LEVEL III Cassette that comes in your LEVEL III package is a
high-quality recording from Microsoft.

You will notice that all the recordings are on "SIDE ONE" of the
cassette. There are two consecutive recordings of LEVEL III BASIC
(Cassette File), followed by two consecutive recordings of LEVEL III
BASIC (Disk File).

The "Cassette File" recordings are for TRS-80 Computers with cassette
tape storage.

The "Disk File" recordings are provided for the convenience of TRS-80
users with Disk storage who want to store LEVEL III BASIC as a file on
diskette.

If you listen to the tapes, you will note that there are five seconds be
tween the two cassette files; five seconds between the two disk files; and
ten seconds between the cassette and the disk recordings.

11

How to Load LEVEL 111*

Cassette File. The first two recordings on SIDE ONE of your LEVEL
III cassette are "Cassette File" recordings. These are identical record
ings of LEVEL III BASIC to be used with TRS-SO Computers with
cassette mass storage. (The Second recording is a backup recording.)

The "Disk File" recordings that follow are for storing and loading
LEVEL III from disk. Unless your TRS-80 is equipped with Expansion
Interface and disk drive, you needn't concern yourself with "Disk
File." For those who are interested, the instructions for using these
recordings are on the following page.

To load LEVEL III BASIC from cassette, use the following instruc
tions:

1. Put the LEVEL III cassette into the TRS-80 recorder so that
SIDE ONE is up.

2. Rewind the tape to its beginning.

3. Enter the command, SYSTEM, and press the rENTERI key.

4. In response to the * ? prompt, enter: LEV 3 rENTERI

5. Press the PLAY button on the TRS-80recorder. There should
soon be two asterisks in the upper-right corner of the TRS-80
screen (the one on. the right "blinks"). These two asterisks
signify that LEVEL III is loading.

6. A successful load will result in another * ? prompt. In
response to this prompt, enter: mfENTER'

7. Assuming that all goes well, the screen will display a
MICROSOFT COPYRIGHT notice, followed by the same
prompt you get with Level II BASIC:

READY
>

-See WARNING. end of this section.

12

Disk File. The Disk File is for TRS-SO Computers equipped with an Ex
pansion Interface, Disk Drive, and anyone of the following Disk
Operating Systems (DOS): Radio Shack 2.1, Radio Shack 2.2, NEW
DOS, and 3.0. Also required is the Radio Shack TAPEDISK utility soft
ware, which is included with most DOS's. If you do not have
TAPEDISK, ask your Radio Shack dealer about it.

Disk File lets you store LEVEL III on diskette so that it can subsequent
ly be loaded from disk instead of tape.

Use the following instructions to save LEVEL IlIon diskette:

1. Put the LEVEL III cassette into the TR8-S0 recorder so that
SIDE ONE is up.

2. Turn on the TRS-SO. In response to the DOS READY prompt,
enter:

TAPEDISK IENTERI

3. This should result in a ? prompt. In reponse to ?, enter:

C DLEV3 ~NTERJ

4. Press the PLAY button on the TR8-S0 recorder. A single
blinking * should soon be displayed in the upper-right cor
ner of the TRS-SO screen.

S. A successful load will result in another? prompt. In response
to this second ?, enter:

F DLEV3/CMD:n 5500 6AOO 5500 JENTERI

L: number

NOTE: LEVEL III can be stored on any Drive, but the cor
responding Drive number has to be entered at "n" above.
Don't forget that the diskette at Drive "ntt must be formatted.

13

6. As LEVEL III is saved, you willhear the familiar sound of the
disk. A successful save will result in another? prompt. In
response to this third ? prompt, enter:

rn:J IENTERI

This should result in an exit from the TAPEDISK utility and
return you to DOS READY.

Correctly put the diskette containing the LEVEL III BASIC
file into the appropriate disk drive.

Turn on the TRS-80.

In response to DOS READY, enter:

BASIC IENTERI

Respond to the prompt, FILES?, by pressing the IENTER
key. Respond likewise to the next prompt, SIZE OF
MEMORY?

2.

3.

4.

How to Load LEVEL UI from diskette. Once LEVEL III has been suc
cessfully saved on a diskette, follow these instructions to load it into the
TRS-80:

1.

5. Now that BASIC is up, go back to DOS by entering:

CMD"S" IENTERJ

6. Load the LEVEL III file by entering:

DLEV3 IENTERI

These steps should result in a successful load. You are now ready to pro
gram in LEVEL III BASIC.

14

WARNING:

Before loading LEVEL III or any other recordings into the TRS-SO
microcomputer, we strongly urge you to disconnect the smallest grey
plug that is normally inserted into the "MIC" jack of the tape recorder.

If for any reason during the actual reading of a tape the TRS-SO turns
off the recorder (via the smallest grey plug), a "spike" may be recorded
on the tape. Should this happen, the recording you are entering will be
permanently damaged.

Our experience shows that this is most likely to occur when using the
Radio Shack CTR-SO recorder, but we recommend that you still discon
nect the smallest grey plug no matter what recorder you are using.

15

What to Do About Loading
Problems

The TRS-80 is known to be "volume sensitive" when it comes to
loading programs from cassette.

Once LEVEL III is in your TRS-80, you can use its LOAD and SAVE
commands for storing programs. These commands correct the volume
sensitivity problem. However, you still have to load LEVEL III itself
under LEVEL II's SYSTEM command.

The most COIDIDOD 10adiDI problelD is finding the correct settings for
the TONE and VOLUME controls on the TRS-80recorder. We suggest
that you start with a low VOLUME setting and adjust it up one half
level each time you attempt a load. The TONE control is not as impor
tant, but change it also.

Since the sensitivityof individual cassette recorders varies significantly,
there is no way to determine specific settings. Once a tape loads, it is a
good idea to write down the settings on the cassette label for future
reference.

If you still cannot load a tape, you might try cleaning and demagnetiz
ing the head of your TRS-80 recorder. Use a high-quality head cleaner
and an inexpensivehead demagnetizer for these tasks. Both can be pur
chased at Radio Shack or many other electronics outlets for under $10
(at the time of this writing). We don't recommend so-called "cleaner
tapes" as they are often abrasive and will damage the head of your
recorder.

Other suggestions to try before taking the matter up with your Radio
Shack dealer include the following:

• Try loading the second recording on your LEVEL III cassette.

• Try loading the tape with a different cassette recorder.

16

• Dust and other praticles can sometimes prevent a load. To
remove particles, run the tape through REWIND and FAST
FORWARD a few times.

• Don't try loading the TRS-80 when you first turn it on. Let it
warm up a few minutes instead.

• Remove the earphone jack and run the tape to listen for the
leader tones and digital signals of the files. If you don't hear
these sounds, try a different recorder. If you still don't hear
them, chances are you have blank tape.

• Ask your Radio Shack dealer about Radio Shack's "cassette
modification" fix. This hardware correction should make
your Level II BASIC less dependent upon exact VOLUME set
tings.

17

LEVEL III Notation Format Rules

The LEVEL III Notation Format was devised to help you understand
how to correctly structure LEVEL III instructions. An example of this
notation follows:

MID$(string1, n[,m]) = string2

The following rules apply to notation:

1. Items in capital letters must be input exactly as shown.
"MID$" in the above example has to be entered as: MID$

2. Items in lower case letters are to be supplied by the user.
"string!" and "stringz" above are examples.

3. Items in square brackets [] are optional. The".m" inside the
square brackets above may be included in some MID$
statements, but not in others.

4. All blank spaces are optional, unless otherwise noted. As you
probably know, BASIC doesn't mind if you run words and
numbers together in program statements. Often this is done to
conserve memory space.

18

If You Have a TRS·80 Screen
Printer

The following applies only to systems with Radio Shack's TRS-80
Screen Printer. It does not apply to systemswith TRS-80 Line Printers I
and III, or with Line Printer II (the Radio Shack thermal printer), or
with any other printers.

If your TRS-80 system has a TRS-80 Screen Printer and you want to
print out LEVEL III generated screen-contents, you must do the follow
ing:

1. Before entering the print instructions as you normally would
with Level II BASIC, enter:

POKE 5657, E3

POKE 5658, 03

2. Execute an INPUT statement, such as INPUT X$.

3. Once you've finished printing out the material you want,
enter:

POKE 5657, 92

POKE 5658, 51

4. Again, execute an INPUT statement. In response to the prompt
(?), press the IENTERI key.

19

20

Chapter TWO:

LEVEL III Programming
Convenience

1/ How to Use Abbreviated Entries

1/ Create Your Own Abbreviated Entries

1/ How to Renumber Program Lines

1/ Saving and Loading LEVEL III

Programs

" No More Coded Error Messages

21

How to Use Abbreviated Entries

Abbreviated Entries are very handy for entering frequently used BASIC in
structions and string expressions, such as a common response to an INPUT
statement.

To enter an Abbreviated Entry, all~ have to do is press (SHIFTI and
one of the letter keys((!J through gj). For example, to RUN a program,

you could enter ISHIFTI [BJ instead of: rn:J [Q] rn:J IENTERI .

LSET LIST. LEVEL III maintains a list of 26 Abbreviated Entries. You
can display this list on your TR.5:'SO screen by entering:

LSETLIST IENTERI

If you change any of the Abbreviated Entries (see next section), the list is
automatically updated.

Turning Abbreviated Entries "Off" and "On". You can "tum off" the
whole list of Abbreviated Entries with the command:

LSETRESET IENTER'

And back on again with:

LSETSET I::!'!EN~T:::!!':ER~I

22

LEVEL m BASIC

Abbreviated Entries

)..:::'?'5.

:'F

)

Enter

AUTO
GET@(
ELSE
EDIT.'
EDIT
GOTO
GOSUB
INKEY$
INPUT l\

LINE INPUT
L1NE((,
LIST
LSET
NEXT
PRINT USING \'
PUT@(
RETURN
RUNt
SAVE"
THEN
TIME$
LOAD"
LEFT$(
MID$(
RIGHT$(
STRING$(\'

SHIFT Key

A
B

l~":~..~~

E
F
G
H
I
J
K
L
M
N
a
P
Q

R
S
T
U
V
W
x
Y
Z

NOTE: The downward arrow (t) is the symbol in this chart for IENTERJ.

23

Create Your Own Abbreviated
Entries

The following command lets you create your own Abbreviated Entries:

LSET letter =string expression

where "letter" is any letter A-Z, and "string expression" is any string up to
15 characters.

LSET may be used as a command or a program statement. Abbreviated
Entries work during program execution as well as program editing. For ex
ample, if you're writing a program with several graphics statements, you
may want to execute the command:

LSET A ="(X1,Y1)- (X2,Y2)"

Then, instead of typing (Xl,Yl)-(X2,Y2) every time it comes up (which
can be frequent), all you do is enter:

ISHIFTI0

You can also use Abbreviated Entries to anticipate common INPUT
responses. For example,

510 LSET R ="REPEAT"
520 LSET C = "CONTINUEH

Suppose a program asks you to enter "REPEAT" or "CONTINUE" at
the end of each of several routines. By tacking the above LSET statements
on the end of the r am, you can respond to this INPUT with a IF

[[] or a SHI ~ , instead of spelling out the complete answer.

Adding IENTERI. To make [ENTERI a part of an Abbreviated Entry,
use the CHRS string with the ASCII value for ENTER (13)

10 LSET L ="LIST" + CHR$(13)

This will janae lET L so that when you enter ISHIFTI [gibe resultwill
be LIST ENTER, instead of just LIST.

24

How to Renumber Program Lines

LEVEL III BASIC'S NAME command is an editing tool that helps you
organize your programs better and write them faster.

You use the NAME command to renumber program lines as you actually
write a program or you use NAME to "clean-up" a fmished program by
giving it sequenced line numbers (such as 10, 20, 30, 40, etc.)

NAME Format. The format of NAME is:

NAME ITnew number][,[old number][,incrementm

With NAME, you can renumber the entire program from the first line
number or you can renumber a sequenceof a program from a designated
line number ("old number" in above format) to the end of the program.

The "new number" can be any legitimateline number. It becomes the first
line number of the new sequence.

For example, you would use "new number" if you wererenumbering a se
quence from line 50, and you wanted line 50 to become line 100. The "new
number" would be 100.

"New number," as well as "old number" and "increment" are optional.
When they are not included in a NAME command, each has a "default
number" which LEVEL III refers to.

The default of the "new number" is 10. Whenever a "new number" is
not included in a NAME command, the first line number of the new se
quence becomes Line 10.

Note: If "new number" is omitted, you cannot renumber a program se
quence with a prior Line number of 10 or greater. Line numbers always
have to be in numerical sequence, beginning with the smallest number
and moving to the greatest. You cannot use the NAME command to
renumber programs in a way that puts its statements out of sequence.
The result will be an ILLEGAL FUNCTION error.

25

"Old Number" is the linenumber from whichthe Renumbering sequenceis
to begin. It is optional, and the default is the first line of the program.

"Increment" is the increment to be usedin thenewsequence. It is optional,
and the default is 10.

NAME alsochanges alllinenumberreferencesfollowing GOTO, GOSUB,
THEN, ELSE, RESUME, INPUT#LEN, ON ... GOTO and
ON . . . GOSUB statements to reflect the new line numbers. If a nonexis
tent line number appears after one of these statements, the error message,
the error message UNDEFINED LINE xxxxx IN yyyyy is printed. The in
correct line number reference(xxxxx) is changed to all spaces. Line number
yyyyy may be changed.

NAME cannot be used to change the order of program lines (for example,
NAME 15,30 when the program has three linesnumbered 10,20 and 30) or
to create line numbers greater than 6SS29. An ILLEGAL FUNCTION
CALL error will result.

The first time you use the NAME command, BASICadds spacesto the end
of each line number that has fewer than fivecharacters. These spaces will
not accumulate, however, when subsequent NAME commands are ex
ecuted.

A NAME eommand with DO arguments willrenumber the entire program,
using 10as the first line number and incrementing by 10for each successive
line.

Other examples:

NAME 1000,900,20

NAME 100,,50.

NAME"l00

Renumbers the lines from 900 up so they start
with line number 1(0) and increment by 20.

Renumbersthe entire program. The first newline
number will be 100. Lines will increment by 50.

Renumbers the entire program. The first newline
number will be 10. Lines willincrement by 100.

26

Saving and Loading LEVEL III
Programs

LEVEL III BASIC replaces the Level II CSAVE and CLOAD com
mands with SAVE and LOAD. When using SAVE and LOAD, exact
volume settings on your recorder are less critical than with CSAVE and
CLOAD.

To save a LEVEL III program you enter the SAVEcommand exactly as
you would enter CSAVE. The format is:

SAVE "file name"

The file name can be any single alpha-numeric character other than
double-quotes ("). The program stored on tape will then be labled by
the specified file name, so that it can be loaded with a LOAD command
that asks for that particular file.

Once you save a program under LEVEL III you can load it back into the
machine with the LOAD command. The format for this command is
similar to CLOAD:

LOAD [UtiIe name"]

LOAD and CLOAD are interchangeable in that a program that has
been stored with CSAVEcan be loaded with LOAD as well as CLOAD;
while a program that has been stored with SAVEcan likewisebe loaded
with either LOAD or CLOAD. However, when you mix LEVEL III
cassette tape commands with Level II commands, you don't get the im
provement in cassette VOLUME sensitivity that you get by using both
SAVE and LOAD.

27

As with CLOAD?, there is a LOAD? command which you can use after
saving a program to test whether the program in memory matches the
one on cassette, and thus has been saved correctly.

You can abort a LOAD or SAVE by pressing the IBREAKI key. Just
remember that doing this leaves you with an incom~lete Pijgram on
cassette or a partial program in memory. Type NEW ENTE to clear
your computer's RAM memory whenever this occurs.

28

No More Coded Errol' Messages

When Level III BASIC encounters an error, it prints the complete error
message, not just an abbreviation.

All the error messages, along with their error codes and Level II ab
breviations, are listed below.

Code Abbreviation

1 NF
2 SN
3 RG
4 OD
5 FC
6 OV
7 OM
8 UL
9 BS

10 DD
11 /0
12 ID
13 TM
14 OS
15 LS
16 ST
17 CN
18 NR
19 RW
20 UE
21 MO
22 FD
23 L3
24

29

Error Message

NEXT without FOR
Syntax error
Return without GOSUB
Out of data
Illegal function call
Overflow
Out of memory
Undefined line
Subscript out of range
Redimensioned array
Division by zero
Illegal direct
Type mismatch
Out of string space
String too ,ong
String formula too complex
Can't continue
No RESUME
RESUME without error
Unprintable error
Missing operand
Bad file data
Disk BASIC feature
Undefined USER function

30

Chapter THREE:

LEVEL III Computer Graphics

V' Two Modes of P ..esentatlon

V' How to D..aw Lines and Rectangles

""" GETting and PUTting G..aphlc A....ays

V' Some Examples of G..aphlcs P ..og..ams

V' Advanced G..aphlcs P ..og..ams

31

Two M.odes of Presentation

With LEVEL III Graphics, you can refer to locations on the screen in
one of two ways, Character Mode and Graphics Mode.

In Character Mode, the screen is divided into a grid that is 64 columns
wide and 16 lines deep:

t
Y«()..1S)

........ X(D-63)

32

In Graphics Mode, the screen is also divided into a similar grid, only it is
much finer, measuring 128columns wide by 48 lines deep.

t
Y(0-47)

~

.......X(o-U7)......

LEVEL III generates lines and graphics shapes in Graphics Mode by
lighting or not lighting specitled coordinate locations on the grid. For
example, to draw a line on the screen from coordinates 32, 12 to 32,89;
LEVEL III lights these locations and all the locations between.

In Character Mode, graphics are generated somewhat differently. In
stead of lighting or not lighting a location, you can enter an alpha
numeric symbol or a "graphics svmbol.'

33

The grid locations in Character Mode actually consist of six Graphics
Mode locations, like this:

Graphic symbols are generated by ftIling in different combinations of
these six grid locations. Since there are 64 different possibilities, there
are 64 graphics symbols.

Each graphics symbol is further identified by an ASCII value from 128
to 191.

This ASCII value is determined by first assigning the following values to
each of the grid locations:

1 2

48

6

34

The ASCII value of each graphic symbol is equal to 128plus the total
value of the locations that are lighted. For example, the following
graphic symbol has an ASCII value of 131:

(128+1+2=131)

Some more examples:

(1.28+1 +8=137) (128+ 2 + 4 + 32 = 166)

Alpha-numeric symbols also have ASCII values, numbering 32 through
127. A listing of these alpha-numeric symbols and their corresponding
ASCII values can be found in Radio Shack's LEVEL II BASIC
Reference Manual, page C/2.

35

You can display the graphics symbols along with their corresponding
ASCII values on your TRS-SO screen with the following program:

5 FOR 8=129 TO 191
10 PRINT CHR$(S);:PRINT 8

15 NEXT

Or to display the alpha-numeric symbols with their ASCII values:

5 FOR 8=32 TO 128
10 PRINT CHR$(8);:PR1NT 8

15 NEXT

eRRS. This string expression is used to return alpha-numeric symbols
and graphic characters. It is formatted as follows:

CHR$(number)

where number is an ASCII value or value reference.

For example, the command PRINT CHR$(68) would return a "D",
while PRINT CHR$(185) returns a graphics symbol.

36

Screen Coordinates. In both Graphics Mode and Character Mode, loca
tions on the screen are referenced by their column coordinate (X),
followed by their line coordinate (Y).

This differs from the way the PRINT@ Statement in Level III BASIC
references the screen. PRINT@ references the screen in Character
Mode where each location is assigneda unique number starting from the
upper-left corner, at location 0, and moving across the lines until the
final location is reached in the lower-right corner, location 1023.

The way PRINT@ references the screen is shown on a graph on page
Ell of the Radio Shack Level II BASIC reference manual.

To convert a PRINT@ location to Character Mode "X,Y" coor
dinates, use the following formula:

X.= number - (64*Y)
Y = INT(number/64)

To convert from coordinates to location number:

number =(Y*64 + X)

37

How to Draw Lines and
Rectangles

With LEVEL IIIBASIC, you can draw a line between any two locations
on the screen in both Character Mode and Graphics Mode. You can also
draw a rectangle between any two locations (assuming that the locations
are opposite corners).

The statement for drawing lines and rectangles is not too surprisingly
called the "LINE statement."

Graphics Mode. Remember, in Graphics Mode the screen is divided into
an X, Y grid where X is 0 to 127 and Y is 0 to 47.

The following statement will draw a line between coordinates 34, 15, and
no, 38:

10 LlNE(34,15) - (110,38),SET

To erase the line, change SET to RESET:

20 LlNE(34,15) - (110,38), RESET

Now, to draw a box (rectangle) between these two points, simply add a
U ,B" to the first LINE statement above:

10 lINE(34,15) - (110,38),SET,B

To erase the rectangle:

10 LlNE(34,15) - (110,38), RESET,B

Finally, there is an option that will draw a "filled-in" or solidly-lighted
box:

10 lINE(34.,15)- (110,38),SET,BF

Ladding an "F' fills in the
box

38

Graphics Mode Format. The format for the LINE statement in
Graphics Mode is as follows:

L1NE(xl,yl)- (x2,y2),SET[,B[F]}

Lr RESET

The LINE statement in Graphics Mode generates a line or rectangle be
tween coordinates (xl .yl) and (xl ,y2), by lighting or "SETting" the ap
propriate screen locations.

RESET can be substituted for SET to erase or "unlight"a line or rec
tangle.

The optional "B" tells the LINE statement to generate a rectangle in
stead of a line.

The optional "F" tells the LINE statement to "fill-in" the rectangle by
lighting all the screen locations within the rectangle. Obviously, you
cannot have an "Fit in a LINE statement if you don't have a U B",

39

Character Mode. In Character Mode the screen is divided into a more
open grid, where X is 0 to 63 and Y is 0 to 15:

When you generate graphics in Character Mode, remember, you use
alpha-numeric or graphic symbols.

The following LINE statement will draw a line of "X's" between
Character Mode coordinates (12,8) and (55,8):

10 LINE (12,8)- (55,8),"X"

LINE statements in Character Mode do not use SET and RESET. To
erase the above line of X's, replace the "X" string with a string contain
ing a blank character, " ", as below:

20 LINE (12,8)- (55,8)," "

To generate a graphics symbol, such as the one with ASCII code 132,the
CHRS string is used:

10 L1NE(12,8) - (55,8},CHR$(132)

LINE statements in Character Mode can also use string variables such as
DS in the following:

100$ = "XU

15 L1NE(12,8) -(55,8),0$

Should the string expression in a LINE statement in Character Mode
consist of more than one alpha-numeric symbol, such as "XEQ" t the
resulting line or rectangle will be generated with the first symbol only
("X"). The LINE statement:

10 L1NE(12,8) - (55,8),"XEQ"

results in a line of "X's",

As with Graphics Mode, you can instruct the LINE statement in
Character Mode to generate a rectangle by adding",B" to the end of the
statement or a "filled-in" rectangle by adding u,BF".

40

The following LINE statement results in a filled-in rectangle of X's be
tween Character Mode coordinates (l5A) and (35,12):

10 LINE (15,4)- (35,12),"X",BF

Character Mode Format. The Format of LINE statements in Character
Mode is the following:

L1NE(x1 ,y1) - (x2,y2),ustring expression"[,B[F]]

The LINE statement in Character Mode is used to generate a line or rec
tangle of alpha-numeric symbols or graphics symbols between any two
Character Mode coordinates.

The "string expression" in the LINE statement can be any alpha
numeric symbol (such as "X", "8"," ") or it can be a string variable
(such as D$); or it can be the CHR$ function, which is generally used to
return a graphics symbol.

Adding the optional ",B" to a LINE statement in Character Mode
causes the LINE statement to generate a rectangle between the two coor
dinates.

Adding the optional "F" tells the LINE statement to "fill-in" the rec
tangle.

41

GETting and POTting Graphic
Arrays

LEVEL III has two more Graphics statements in addition to the LINE
statements. These statements are GET and PUT.

The GETstatement is used to "get" or store in an array the contents of
a specified section of the screen. This section of the screen may be defin
ed by either Character Mode coordinates or Graphic Mode coordinates.
The array can be an integer array (such as AOJo). a singleprecision array
(such as At). or a double precision array (such as AN).

GETting a graphics array does not cause the contents of the specified
section of the screen to be erased. The content is now both saved in the
array and on the screen.

To erase graphics, you can use one of the following methods:

1.' If the graphics were created in Graphics Mode. RESET all
the lines and rectangles.

2. If the graphics were created in Character Mode. replace all
strings with strings containing the blank character. " H.

3. Use the PUT statement to PUT a blank array or the part of the
array that is blank on top of the part of the screen you wish to
erase. When doing animation. it is sometimes useful to GET
an array that is larger than the area of the screen containing
the graphics. This way. part of the array is blank and can be
PUT back on the screen to erase the existing graphic at the
same time the graphic part of the array is PUT back on the
screen.

Once a GET statement has been executed. the resulting array can be
returned to the screen at any specified section with the PUT statement.
In Character Mode. you can only PUT the array back on the screen as it
was saved. However. in Graphics Mode you can also specify an
"action" that will change the array.

42

GET Example. Assuming that the following program is used to draw a
rectangle on the screen,

10 CLS

15 LlNE(22,9) - (29,20),SET,BF

You could GET this rectangle in Graphics Mode with:

20 DIM A%(20)

25 GET @(22,9) - (29,20),G,A °/0

Or you could GET it in Character Mode with:

20 DIM AO/o(20)

25 GET@(11,3) - (14,6),A°/0

GET Format. The format of a GET statement is as follows:

GET@(x1,y1) - (x2,y2)[,G],array name

The GET statement is used to GET a portion of the screen into an array
defined by either Character Mode coordinates or Graphics Mode coor
dinates.

When the optional U ,G" is included, the GET statement assumes
Graphics Mode. If II,G" is not included, GET assumes Character Mode.

The "array name" can be any legal integer (010), single precision (!), or
double precision (#) array. (If arrays aM biss" thmt tMir~d.aftrtrlt'Sizct

~~mustbe dimensioned before they are used.)

The "@" sign in a GET statement is a mandatory part of the statement.

43

PUT example. Assuming that you used Character mode to GET the ar
ray in the above example, you could put it back on the screen at a dif
ferent location with a PUT statement:

30 PUT@(44,3) - (47,6),A%

The above PUT statement is in Character Mode. Whenever you GET
an array in Character Mode, you PUT it back on the screen in Character
Mode. Likewise, whenever you GET an array in Graphics Mode, you
PUT it back in Graphics Mode.

Assuming that you saved the above array in Graphics Mode, you could
PUT it back on the screen with the following:

30 PUT@(88,9) - (95,20),SET,A%

Notice that this PUT statement is different from the one above in that it
has the word "SET" included. In Graphics Mode, the PUT statement
requires an "action indicator" to tell it "how" to return the array. The
action indicator, "SET", tells the PUT statement to return the contents
of the array exactly as they were saved.

If you do not include an action indicator in a PUT statement, LEVEL
III assumes you are PUTting the array in Character Mode.

PUT Format. The format of the PUT statement isas follows:

PUT@(x1,y1)-(x2,y2)[,action],array name

44

The PUT statement in Graphics Mode can have one of five action in
dicators, including:

OR

SET

XOR

AND

Puts the array on the screen exactly as it was saved, i.e., all
the "on" positions are turned on and all the "off" posi
tions are turned off.

Puts the complement of the array on the screen, i.e., all the
"on" positions are turned off and all the "off" positions
are turned on.

Each position in the array is ANDed with the current status
of that position on the screen, i.e., a position willbe turned
on only if it is "on" in the array and "on" on the screen.

Each position in the array is ORed with the current status
of that position on the screen, Le., a position is turned on if
it is "on" in the array or if it is "on" on the screen or both.

Each position in the array is XORed with the current status
of that position on the screen, i.e., a position is turned on
only if its status in the array is the opposite of its status on
the screen.

These options give the PUT statement a great deal of flexibility. For ex
ample, a figure can appear to blink by PUTing it on the screen with two
PUT statements that alternate SET and RESET, or by XORing it with
the surrounding area. Or a figure can appear to move by PUTing it on
the screen with gradually changing coordinates.

RESET

,

45

Dimensioning Graphic Arrays. Unless you dimension arrays in GET
and PUT statements with enough array "elements" the result will be an
ILLEGAL FUNCTION CALL. All arrays 'wiilHnore tllan-tU}elcmems
must be dimensioned.

Usually, you dimension arrays by simply making sure they are plenty
big enough, however, if you want to make sure, you can use the follow
ing formulas:

Array Elements

Integer (0/0) bytes/2

Single Precision (!) bytes/4

Double Precision (I#) bytes/8

Bytes? Each location in Character Mode uses a single byte. The rec
tangle defined by Character Mode coordinates (44,3)-(47,6) contains 16
character locations, and thus requires 16 bytes. An Integer array (0/0)
that GETs or PUTs this rectangle would require a minimum of 8 array
elements (16 bytes/2 = 8 elements). This array wouldn't need to be
dimensioned in this program unless you want to save (3) elements of
memory.

Determining the number of bytes in Graphics Mode is a bit more com
plicated. The number of bytes equals the total number of screen loca
tions divided by 8 plus 2. The rectangle defined by Graphics Mode coor
dinates (22,9)-(29,20), contains 84 locations, and thus requires 84/8 + 2
or 13 bytes. An integer array (0/,) that GETs or PUTs this rectangle re
quires 13/2 or 7 array elements.

46

If

Some Examples of Graphics
Programs

Graphics Symbols. Fills screen with the graphic symbols.

Program

10 CLS

20 FOR I = 129 TO 191

30 LINE (0,0)-(63,15),CHR$(1),BF

40 FOR J = 1 TO 100:NEXT J
50 NEXT I

Jagged Lines.

Program

10 FOR N = 1 TO 10

20 CLS

30 Y1 =0:X1 = 0

40 FOR I = 1 TO 30

50 X2 = RND(127):Y2 = RND(47)

60 LINE (X1,Y1)-(X2,Y2),SET

70 X1 = X2:Y1 = Y2

80 NEXT I:NEXT N

Notes

clears screen

assigns values
fills screen

timing loop

loops back to 20

Notes

assigns values (10 patterns)

clears screen

defines point (upper-left
corner of screen)

assigns values (30 lines)

defines second point as any
random point on screen

draws line

redefines first point as second
point

loops back to 10

Variation: To change this program to create its pattern of lines on a
white background, add line 25 LINE (O,O)-(l27,47),SET,BFand change
SET to RESET in line 60.

47

Reshaping An Array. Here we GET an array and actually "reshape" it
by PUTting it back on the screen in a different shape. This technique
works well in Character Mode, but is difficult to do in Graphics Mode.

Program Notes

10 CLS

20 PRINT@ o, "HANG IN THERE"

30 FOR Z = 1 TO 200:NEXT
40 DIM AO/o(7)

50 GET @(0,0)-(15,0),A %

60 CLS

70 PUT@(0,0)-(0,15),A %

80 GOTO 80

48

clears screen
start message at Character

Position 0
timing loop
dimension array
GETting array and calling

it All'Jo

clear screen to wipe out
message

PUTting array back in
different shape

creates loop to prevent
READY prompt from
wiping out our message
(try it without this line)

Space Ship. Two programs that show the difference between Graphics
Mode and Character Mode. Can you spot these differences?

Program

10 'SPACE SHIP IN GRAPHICS
MODE

20CLS

30 LINE (3,1)-(3,2), SET

40 LINE (2,3)-(4,4), SET,BF

50 LINE (1,4)-(1,5), SET

60 LINE (5,4)-(5,5), SET

70 DIM A0/0(2)

80 GET@(1,1)-(5,6),G,A%

90 CLS

100 FOR Y =42 TO 1 STEP -1

110 PUT@(1,Y)-(5,Y + 5),SET,A%

120 NEXT Y

130 CLS

140 GOTO 100

49

Notes

remark
clear screen

draws spaceship

dimension array
GETting array
clear screen
so rocket will start at bottom

of screen and move up
PUTting array on bottom of

screen
creates movement
clears screen
let's do it again, and again,

and again...

Program

10 'SPACE SHIP IN CHARACTER MODE

20 CLS
30 LINE (3,1)-(3,2), SET
40 LINE (2,3)-(4,4), SET, SF

50 LINE (1,4)-(1,5), SET

60 LINE (5,4)-(5,5), SET
70 DIM A %(7)

80 GET @(0,0)-(3,3),A0/0

90CLS

100 FOR Y=12 TO 1 STEP 1
110 PUT@(0,Y)-(3,Y + 3),A%

120 NEXT Y

130 CLS

140 GOTO 100

50

Disco Ship. Image of ship flashes on and off. In Graphics Mode, this
program GETs the image in A010. After clearing the screen, it repeatedly
PUTs the image back on the screen. Take note of the use of "XOR" as
the action indicator; this technique is what causes the flashing.

Program

5CLS
10 DIM A°/0(50)
20 LINE (3,1)-(3,2), SET: LINE (2,3)-(4,4), SET, SF: LINE

(1,4)-(1,5), SET: LINE (5,4)-(5,5), SET

30 GET@ (1,1)-(5,6), G, AOlo

40 CLS
50 PUT@ (20,20)-(24,25),XOR,A%

60 FOR T=l TO 50: NEXT

70 GOTO 50

51

Advanced Graphics Programs

Try running some of these programs to see if they don't give you some
insights into the possibilities of LEVEL III Computer Graphics.

Airplane.

10 CLS:DIMA%(50), BO/o(50)

20 L1NE(91,11)-(124,14),SET,BF:L1NE (117,8)-(121,8),SET:
LIN E (116,9)-(122,9),SET

30 LIN E(115,10)-(123,10),SET:L1NE(97,11)-(104,11),RESET:
LINE (86,13)-(90,13),SET

40 LINE (100,13)-(110,13),SET

50 L1NE(85,11)-(85,15),SET:GET@(42,2)-(63,5),A%

60 L1NE(85,11)-(85,15),RESET:GET@(42,2H63,5),B%

70 Xl = 63:Y = 2:Y1 = 5:ClS

80 FOR X=42 TO 0 STEP 1

90 PUT@ (X,YHX1,Y1),A%

100 FOR T = 0 TO 5:NEXT T

110 PUT@(X,Y)-(Xl,Yl),B%

120 FOR T=O TO 15:NEXT T

130 Xl =Xl -1

140 NEXT X

150 GOTO 70

52

Flying Duck.

10 CLS:DIM A 0/0 (15), BOlo (15)

20 LINE (12,2H15,2),SET:L1N E(6,3)-(9,3),SET:L1N E(13,3)
(17,3),SET:SET(5,4):SET(10,4)

30 LINE (12,4)-(13,4),SET:LINE(3,5)-(12,5),SET:L1NE(4,6)-(5,6),
SET:L1N E(10,6)-(11,6),SET

40 L1NE(5,7)-(10,7),SET
50 GET@(0,0)-(8,2),A °/0

60 LIN E(5,3)-(10,4),RESET,BF:L1N E(6,6)-(9,6),SET
70 GET@ (0,0)-(8,2), BOlo

80 CLS:X1 = 8:Y = 0:Y1 = 2
90 FOR X=O TO 55
100 PUT@{X,Y)-(X1,Y1),A%

110 FOR T = 0 TO 2:NEXT T
120 PUT@(X,Y)-(X1,Y1),8%

130 X1 =X1 + 1
140 FOR T =0 TO 10:NEXT T
150 NEXT X

160 GOTO 80

53

Boxes.

10 DIM A%(600), BO/o(600)

20 CLS: FOR T = 1 TO 4: LINE (RND(127),RND(47»-(127)
RND(47»,SET,B:N EXT

30 F$ = u* ":X = RND(63):IF X >32 THEN M = 64 - X ELSE
M=X

40 FOR 1=1 TO M: GET@(1,OHX,15),A%:GET@(X,0)-(62,15),B%

50 LINE (X,O)-(X + 1,15),F$,B:F$ =" "
60 PUT@(0,0)-(X-1,15),A%:PUT@(X +1,0)-(63,15),B%:NEXT:

GOTO 20

Radar.

10 FOR R = 15 TO 1 STEP 1

20CLS

30 FOR Y =0 TO 47 STEP 47
40 FOR X =0 TO 127 STEP R

50 LIN E (64,24)-(X,Y),SET

60 NEXT X,Y
70 FOR X = 0 TO 127 STEP 127

80 FOR Y =0 TO 47 STEP R
90 LINE (64,24)-(X,Y),SET

100 NEXT Y,X

110 NEXT R

54

More Ships.

10 CLS

20 LINE (3,1)-(3,2),SET:LINE(2,3)-(4,4),SET,BF:
LINE (1,4)-(1,5),SET:L1NE (5,4)-(5,5),SET

50 DIM A °10 (2):GET@(1,1)-(5,5),G,Aolo
60 CLS:DIMBO/o(2)

70 LINE (0,2)-(1,2), SET:L1NE (2,1)-(4,3), SET, BF:
LIN E (4,0)-(5,0), SET:L1NE (4,4)-(5,4), SET

110 GET@ (0,0)-(5,4),G,Bo/o

120 CLS:X = 120:Y = 41

130 IF Y =0 OR X =0 THEN 120

140 D = RND(2):IF D = 1 THEN 190

150 S = RND(15):IF X - S <°THEN S = X
160 FOR X=X TO X-S STEP -1

170 PUT@(X,Y)-(X + 5,Y + 4),SET,Bo/o

180 NEXT X:X = X + l:GOTO 130

190 S = RND(5):if Y - S <0 THEN S = Y

200 FOR Y = Y TO Y - S STEP -1

210 PUT@(X,Y)-(X + 4,Y + 4),SET,A 0/0

220 NEXT Y:Y=Y +1:GOTO 130

55

56

Chapter FOUR:

LEVEL III Features From
Disk BASIC

v INPUTting String Literals with
LINE INPUT

v Adding a Time Limit with #LEN

,,; Replacing a Portion of One String
with Another String

,,; You Can Search a String for a Substring

,,; How to Define Functions

t/ Up to 10 Machine Language User
Routines

t/ How to Convert Hex and Octal to
Decimal

t/ SYSTEM Command Caution

S7

INPUTting String Uterals with
UNEINPUT

LEVEL III has a LINE INPUT statement that is frequently used for in
putting string literals. The format of LINE INPUT is as follows:

LINE INPUT ["prompt string";] string variable name

luch as A$, B$, etc.

Unlike Level II's INPUT statement, a LINE INPUT statement assigns a
strin variable name to the entire line of input. Every character typed up
to ENTE is part of the string, including punctuation and leading
spaces.

LINE INPUT is also different from INPUT in that it doesn't
automatically display a question mark (?) when it is executed. If you
want a question-mark prompt, you have to make it part of the prompt
string. An example of LINE INPUT where ? is part of the prompt
follows:

5 LINE INPUT "CITY?,STATE?" ;CS$

When this statement is executed, the screen will display the prompt:
CITY?,STATE? The answer (user input) is assigned as a string literal to
CS$.

Example program. You could use the above LINE INPUT statement in
a program like the following:

10 LINE INPUT "CITY?,STATE?";CS$
20 PRINT CS$
RUN
CfTY?,STATE? NEW YORK, NEW YORK
NEW YORK, NEW YORK

This program prints out the entire user input NEW YORK, NEW
YORK, including the comma (,).

S8

Adding a Time Limit with #LEN

INPUT and LINE INPUT statements have an optional feature called
#LEN. #LEN lets you impose a limit on the length of time allowed
before a response is given to the INPUT statement. It is particularly
useful for game programs and computer assisted instructions. The for
mat of the statement is:

[L1NE]INPUT#LEN n,m;["prompt string";]variable
name(s)

where n is the time limit in seconds and m is the line number to branch
to if the time limit is reached.

The remainder of the statement is the same as the INPUT statement.
The prompt string (if given) and a question mark are printed, and the
items typed in at the terminal are assigned to the variables in the list.

Example program:

5S=4
10 X = RND(100)
20 Y = RND(100)
30 PRINT X:" + ";Y;" =";
40 INPUT#LEN S, 100;Q
50 IF Q=X+ Y THEN PRINT "SMART" ELSE PRINT "DUMB"
60 GOTO 10
100 PRINT "SLOW!"
110GOTO 10

59

Replacing a Portion of One String
with Another String

In Level II BASIC, the MID$ function is used to return a substring of a
given string. MID$ has an additional capability in LEVEL III BASIC. It
may be used on the left side of an equation to replace a portion of one
string with another string. The general format is:

MID$(string1,n[,m]) =string2

where nand m are integer expressions.

The characters in stringl, beginning at position n, are replaced by the
characters in string2. m is optional; it refers to the number of characters
from string2 that will be used in the replacement. If m is omitted, all of
string2 will be used. However, regardless of whether m is omitted or in
cluded, the replacement of characters will never go beyond the original
length of stringl,

Example:

10 A$= "KANSAS CITY, MO"
20 MID$(A$,14)= ilKS"
30 PRINT A$
RUN
KANSAS CITY, KS

60

You Can Search a String for a
Substring

The INSTR function in LEVEL III BASIC eliminates the need for an
"instring subroutine," as described in the Level II BASIC manual.
INSTR provides the same capability, and it's much easier to use. The
format of the INSTR function is:

INSTR([n ,]string1,string2)

INSTR searches stringl for a substring that matches string2. When a
match is found, INSTR returns the starting position of the match. n is
an optional integer offset which designates the starting position for the
search. If n is omitted, the search starts with the first character in str
ingl.

If no match is found, or if n is greater than the length of stringl, or if
stringl is null, INSTR returns zero. If string2 is null, INSTR returns n (if
specified) or one.

Example:

10 A$ = "ABCDEABCDE"

20 B$="BC"

30 PRINT INSTR(A$,B$)

40 PRINT INSTR(3,A$,B$)

RUN

2

7

61

How to Define Functions

Often a program will contain a particular operation that is repeated
several times. When this happens, you can save time and memory by
defining your own function to perform that operation. Then, instead of
writing out the entire operation each time, it is only necessary to do a
function call.

The DEF FN statement is used to name and define user functions. The
formal-of the statement is:

DEF FNvarlable nameliparameter IlstV' function
definitionJ~ -

The variable name is any legal variable name. This name, prefixed by
FN, becomes the name of the function. The parameter list is comprised
of those variable names in the function definition that are to be replaced
when the function is called. The parameter list is enclosed in parentheses
and the items in the list are separated by commas. The function defini
tion is an expression that performs the necessary operation. Variable
names that appear in this expression serve only to define the function;
they do not affect program variables that have the same name. A
variable name used in a function definition mayor may not appear in
the parameter list. If it does, the value of the parameter is supplied when
the function is called. Otherwise, the current value of the variable is
used.

Example. In the following example, a function is defined that adds the
second power of one number to the third power of another.

10 DEF FNA (L,M)= L,.2 + Mt3
20 C=1:D=2
30 PRINT FNA (C,D),FNA(5,2),FNA(4,3),FNA(2,3)
RUN
9 33 43 31

62

A function is defined called DEF FNA that adds the second power of
one number to the third power of another.

The DEF FN statement can also be used to define a string function, as in
the following program:

5 CLEAR 500
10 DEF FNST$(A$,B$) = A$ + H," + B$

20 INPUT "FIRST NAME";FN$
30 INPUT "LAST NAME";LN$
40 X$ = FNST$(FN$,LN$)
50 PRINT X$

RUN
FIRST NAME? ALEX
LAST NAME? HAMBONE

ALEX HAMBONE

NOTE: The variable name in the second example ends with a dollar sign
($). Function name variables, like other kinds of variables, must in
dicate the type of value to be returned. Thus, a function name variable
may end with a $ (string), # (double precision), 010 (integer), or ! (single
precision). The default is single precision (l).

63

Up to 10 Machine Language User
Routines

In LEVEL III BASIC. the USR function has been expanded so that 10
different machine language user routines may exist in memory at the
same time. As with Level II BASIC. the routines may be assembled with
the TRS-80 Editor/Assembler and loaded with the SYSTEM command.
or they may be POKEd into memory. However. it is no longer necessary
to POKE the starting address of a user routine into memory. The
DEFUSR statement is provided for this purpose.

USR Function. The new format for the USR function is:

USR(n](argument)

where n is an integer from 0 to 9 and argument is the value to be passed
to the user routine. A USR function with no n is the same as USRO. The
USR function calls a specific user routine in memory. namely the one
beginning at the address specified in the corresponding DEFUSR state
ment.

64

DEFUSR Statement. The DEFUSR statement tells BASIC the starting
address of a USR routine. The format of the statement is:

OEFUSR[n] = address

where n is an integer from 0 to 9, corresponding to the number of the
user routine located at "address." (If n is omitted, DEFUSRO is assum-

• ed.)

For example: A user routine called USR3 has been POKEd into memory
beginning at address 28000. Before calling the user routine, the program
must execute the statement:

OEFUSR3 = 28000

A calling statement for this routine might look like:

A=USR3(B)

If a user routine is called before the corresponding DEFUSR statement
has been executed, an ILLEGAL FUNCTION CALL error results.

It is still possible to POKE the starting address ofUSRO into memory, as
described in Chapter 8 of the Level II BASIC Manual.

65

How to Convert Hex and Octal to
Decimal

To convert hexadecimal and octal numbers to decimal numbers, prefix
the hexidecimal number with:

&H

and the octal number with:

&

This will work most all LEVEL III instructions. The exceptions are
DATA statements and in response to INPUT statements. Also, hex con
version does not work in FOR... NEXT loops, though octal conversion
does work.

When combined with the PRINT command, this feature can be used as
an octal/hexadecimal to decimal conversion calculator. For example,

PRINT &H4A5F IENTERI

will return the correct decimal conversion: 19039

POKE Example. To POKE the hex value FF (255 decimal) into location
4A5F, use the statement:

POKE &H4A5F, &H FF

A subsequent PEEK at location 19039 will return: 255

66

SYSTEM Command Caution

If you enter a SYSTEM command while in LEVEL III BASIC, you will
find that upon returning to LEVEL Ill, the ERROR .messages are
scrambled.

To avoid this problem, we recommend that you enter the SYSTEM
command from Level II BASIC.

67

68

Chapter FIVE:

LEVEL III Expansion Interface
Features

"" LEVEL Ill's Clock and Calendar

V" How to Turn Off the System Clock

"" How to Output to an RS·232 Port

V" Lockout Recovery

69

LEVEL Ill's Clock and Calendar

TIMES is a string that keeps track of the date and time. The format of
the string is:

MM/DD/YY HH:MM:SS

When you load LEVEL III BASIC, TIMES contains all zeros but im
mediately starts keeping track of the seconds, minutes, and hours elaps
ed.

To set the date and the actual time, type the CMD"R" command with a
17-character argument that represents the month, date, year, hour,
minute, and second. For example, to set the date at November 21, 1979
and the time at one-thirty a.m. exactly, type:

CMDHR"/'11 21 79 01 30 00"

BASIC will supply the punctuation, you only need to type spaces bet
ween the numbers. Note that you must include leading "0".

After executing this command, the time and date will increment proper
ly for as long as the TRS-80 is turned on.

TIMES may be used in any program that requires a timer or reference to
a specific day, hour, etc.

70

How to Turn Off the System Clock

Note: If your TRS-80 includes an Expansion Interface, you need to be
aware of the following:

Tape operations other than SAVE and LOAD* on a TRS-80 with Ex
pansion Interface are vulnerable to interruptions from the system clock.
Therefore, before doing a SYSTEM, INPUT#-l, or PRINT#-l com
mand, you must turn off the system clock. And once the command is
executed, the system clock should be turned back on.

The command that turns the clock off is CMD' 'T" and the command
that turns it back on is CMD" R." These commands may also be used as
program statements.

Example. Here we tum the clock off, read values from tape, and turn
the clock back on.

100 CMOIIT"
120 INPUT# -1,X,Y,Z
130CMOilR"

·SAVE and LOAD turn the clock off and back on again automatically.

71

How to Output to an RS·232 Port*

LEVEL Ill's PRINT# - 3 statement is used just like the PRINT state
ment, except data is output to the RS-232port. The format of the state
ment is:

PRINT# - 3, list of items

Now it's easy to do output to a line printer (or other device) that is
hooked up to your RS-232port. Input from an RS-232port still requires
the use of machine language routines.

The first character sent by BASIC to the RS-232 causes the RS-232's
DART to initialize using the switches set on the RS-232. In order to
override this default initialization, send a dummy character to the
RS-232 port and then re-initialize using a machine language subroutine.

·Requires RS-232 port.

72

Lockout Recovery

Two common occurrences that cause system lock-out are:

1. An attempt to execute an LLIST or LPRINT while the line
printer is off line, or

2. An attempt to execute a LOAD while the recorder is off line.

With Level II BASIC, reset must be used to recover from the lock-out
and, if your system includes an expansion interface, this results in loss
of the current program.

LEVEL III BASIC monitors the break key during printer I/O and
LOAD lock-outs. So you can use the break key to recover from a system
lock-out without losing your program.

73

74

General Index

Abbreviated Entries 22-24
Adding ENTER 24
List of 23
Listing on Screen 22
Turning them "off' and "on" 22

ASCII Values 34-36

Cassette File 12
Character Mode 32,40-41,43-44,46,49-50
CHR$ 36
CMD"R" 71
CMD"T" 71

DEF FN 62-63
Define Functions 62
DEFUSR 65
Disk File 13-14

Error Messages 29

Functions 62

GET 42-43
Graphics Arrays 42, 46, 48
GraphicsMode 33,38-39,43-46,49,51
Graphics Programs 47-55
Graphics Symbols 33-36,47

Hardware Requirements 10

INPUT ..•......... 58-59
INSTR 61

75

#LEN 59
LINE 38-41
LINE INPUT 58-59
LOAD 27-28
LOAD? 28
Loading LEVEL III 12-15
Loading Problems 16-17
Loading Programs 27-28
LSET 22-24

LSET LIST 22
LSET RESET 22
LSETSET 22

Machine Language Routines 64
Microsoft 9
Microsoft Consumer Products 9
MID$ 6()

NAME 25-26
Notation Rules 18

PRINT@ 37
PRINT#3 72
PUT 42,44

Renumber 25-26
RS-232 72

SAVE 27-28
Saving Programs 27-28
Screen Coordinates 32-33,37
Screen Printer 19
String Literals 58
Strings 58-61
SYSTEM Caution 67

76

SystemClock 71

TAPEDISK 14
TIMES 70

USR Function 64-65

XOR•••.•.........•.•.•..•••..••.•................ . 45,51

77

Catalog No. 1011
Part No. 10F01

Printed in U.S.A.

